Clean Air Mercury Rule Overview, Costs and Benefits

Alexis Cain, USEPA, Region 5 Great Lakes Binational Toxics Strategy Mercury Workgroup May 17, 2005, Toronto

Clean Air Mercury Rule (CAMR)

- Final rule signed March 15, 2005
- Sets State budgets for mercury emissions from Electricity Generating Units
- Creates national allowance trading program that states can opt into
- Complementary to Clean Air Interstate Rule (CAIR), which controls sulfur dioxide and oxides of nitrogen from EGUs

Clean Air Mercury Rule

- Two phases:
 - 2010--38 ton cap, with emissions reduced by taking advantage of "co-benefits" of reducing sulfur dioxide (SO2) and nitrogen oxides (NOx) emissions under CAIR
 - 2018--15 ton cap upon full implementation (69 percent reduction)
 - "banking" of allowances could delay full implementation of reductions, but encourage early reductions from 2010 to 2017
- New coal-fired power plants (construction starting on or after Jan. 30, 2004) must meet new source performance standards AND are subject to caps

CAMR Implementation

- Creates an emission reduction requirement under Clean Air Act section 111(d). Distributes national utility mercury emissions cap among the States and two tribes
- States must submit implementation plans, including regulations, within 18 months of CAMR signature (9/06)
- Can choose model rule, including national emissions allowance trading program modeled on Acid Rain program
- State plans must meet mercury emissions budget; otherwise, have great flexibility. Can set different allowance allocation rules, auction allowances, or allocate fewer allowances, and still participate in national trading program
- Must adopt model trading program provisions to participate in national trading program

Why a Cap-and-Trade Program?

- EPA has revised the 2000 regulatory determination that electric utilities must be regulated with MACT standard. Not legally necessary to have a MACT standard, especially given ability to regulate under section 111(d)
- Cap and trade program provides cost savings, guarantees permanent cap on emissions, allows provision of long implementation time frame as technology becomes available
- EPA analysis indicates that "hotspots" of mercury deposition will be addressed despite emissions trading

Will Allowance Trading Cause Mercury Hotspots?

- Trading promotes reductions at the sources with lowest control costs; these are typically the largest sources
 - Controls will primarily reduce emissions of ionic mercury primarily, the form of mercury that most deposits locally
 - EPA evaluated impact of regulations on mercury deposition in 2,150 watersheds encompassing the U.S.
 - found deepest reductions in places where utilities had the biggest impact
 - By 2020, utility mercury emissions will account for no more than 20% of deposition in any watershed

Summary Statistics for Percent Utility Attributable Mercury Deposition (aggregated to the HUC-8 level)

Statistic	2001 Base Case	2020 (with CAIR/CAMR)
Minimum	0.01%	0.01%
Maximum	55.21%	18.79%
50th percentile	2.92%	2.00%
90th percentile	21.14%	7.58%
99th percentile	39.16%	12.81%

Costs-Benefit Assessment

- Estimated costs (incremental to CAIR): \$846-895 million/year
- EPA estimated neurological health benefits from reducing mercury exposure through fresh-water fish consumption
- Neurological benefits in IQ points
- Estimated benefits: \$0.2 million \$3.0 million/year + unquantified potential benefits, including ocean fish mercury reductions, reductions in Western U.S. freshwater fish, cardio-vascular health benefits, particulate matter reductions

NESCAUM/Harvard Center for Risk Analysis (2/05)

- Estimated benefits of EGU mercury controls range from \$75 million to \$5.2 billion
- \$48 million \$4.9 billion from cardiovascular benefits in adults
- \$75 million \$288 million in neurological benefits from reduced fetal exposures
- Includes freshwater and saltwater fish

Differences Between EPA and NESCAUM Benefit Analyses

EPA	NESCAUM	
Incremental impact of CAMR reductions beyond CAIR	Total mercury reductions from "Clear Skies Initiative"	
Considered freshwater fish in 37 Eastern States	Considered all U.S., Gulf of Mex., NW Atlantic, rest of world	
Did not quantify cardio-vascular health impact	Quantified (uncertain) cardio- vascular health impact	
Benefits reduced by "lag" time between reduced emissions and reduced fish concentrations	No lag time incorporated	
Cost/lost IQ point: \$8,807 (1999)	Cost/lost IQ point: \$16,790 (2000)	

Some differences in dispersion modeling, dose response modeling. However, both include both a "no-threshold model" and a "threshold model," with the EPA reference dose as the threshold.

IQ Impacts Per Birth Cohort of <u>All</u> Current (2001) U.S. Methylmercury Exposures (\$ in millions)

		EPA
	NESCAUM	(implied)
Threshold model (IQ pts)*	187,000	85,003
\$ value	\$3,137	\$749
No-threshold model (IQ pts)	1,185,600	250,010
\$ value	\$19,906	\$2,202

^{*} Using upper bound of range of estimates of IQ impact from EPA threshold model.

Percentage of IQ Lost from Methylmercury Exposure Regained as a Result of Utility Emissions Reductions (using threshold models)

NESCAUM 1 (19.1 ton	
emissions reduction)	2.6%
NESCAUM 2 (26.7 ton	
emissions reduction)	4.2%
CAMR vs CAIR* (9.4 ton	
additional reduction)	0.7%
CAIR vs 2001* (14.2 ton	
emissions reduction)	8.6%
* Using upper bound of range of estimates of IQ impact from EPA	
threshold model.	

Changes from Baseline Mercury Deposition Within U.S

NESCAUM, Scenario 1

Northeast	3.00%
Mid Atlantic	9.00%
Southeast	3.00%
Midwest	3.00%
West	1.00%
EPACAMR vs CAIR (mean watershed)	1.02%
(90th percentile utility impact watershed)	0.46%
EPACAIR vs 2001 (mean watershed)	8.30%
(90th percentile utility impact watershed)	12.18%

Conclusions

- Importance of understanding cardiovascular impacts
- With respect to neurological impacts, primary difference between EPA and NESCAUM studies is the reduction scenario under consideration
- Neither EPA nor NESCAUM have considered health benefits from U.S. reductions on Canada or elsewhere outside U.S.
- Importance of understanding impact of deposition on seafood, in order to understand global benefits of mercury emissions reduction